Product Approval Supporting Calculations Alternative Anchorage Analysis & Design

Project Number: MS24-05004

Drawing Number: D1000255

Reference Test Report: NCTL-310-23-019

Product Name: F-4500 Swinging Door (OSW)

Prepared for: Jeld-Wen Windows & Doors 3737 Lakeport Blvd. Klamath Falls, OR

Prepared by: Micah Swartz, P.E.

This item has been digitally signed and sealed by Micah Swartz, P.E. on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies. Micah Swartz, PE Florida License No. PE 93573

Scope:

Micah Swartz, P.E. is contracted by Jeld-Wen Windows & Doors to evaluate alternative anchorage for the product: F-4500 Swinging Door (OSW). This evaluation is based on testing performed by National Certified Testing Laboratories (NCTL) in Everett, Washington, test report no.: NCTL-310-23-019 and dated 02/22/2023.

This evaluation does not include the air infiltration, water resistance or water penetration of the installation method or the installed product. In addition, the design of the building substrate to resist the superimposed loads is by others.

Reference Standards:

Florida Building Code, Building, 2023 Edition

ANSI/AWC NDS 2018 - National Design Specification (NDS) for Wood Construction

AISI S100-16 (2020) North American Specification for the Design of Cold-Formed Steel Structural Members

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners

NOA 24-0102.06 Tapcon Concrete and Masonry Anchors with Advanced Threadform Technology

Certification of Independence:

In accordance with Rule 61G20-3 Florida Administrative Code, Micah Swartz, P.E. hereby certifies the following:

(1) Micah Swartz, P.E. does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.

(2) Micah Swartz, P.E. is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.

(3) Micah Swartz, P.E. does not have, nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.

(4) Micah Swartz, P.E. does not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

Micah	Swartz,	P.E.
-------	---------	-------------

Project Number:	MS	24-05004		
Project Name:	F-4500 Swi	nging Door	(OSW)	
Date:	5/23/2024	Page:	3 of 9	

Design Summary:

The table below summarizes the product: F-4500 Swinging Door (OSW) and their corresponding performance levels as established by testing.

	Series/Model	Test Report Number	Size (W x H)	Performance
	F-4500 Swinging Door	NCTL-310-23-019	71 5 7 70 125	LEO met / EE met
	(OSW)	(02/22/23)	71.5 X 78.125	+ 50 psf / - 55 psf
As 1	Tested Design:			
	Screw Information:			
	Screw Size: 8	Screw Embed: 1.5 in	Edge Distar	nce: 3/4 in (minimu
	Wood Screw Lateral:	106 lbs		
4 <i>lte</i>	ernative Fasteners:			
	Screw Information:			
	Screw Size: 8	Screw Embed: 1.5 in	Edge Distar	nce: 3/4 in (minimu
	Wood Screw Lateral:	106 Ibs		
	Tapcon Information:			
	Tapcon Size: 3/16 E	Embedment: <mark>1-1/4</mark> in (mir	nimum) Edge Distar	nce: <mark>2-1/2</mark> in (minimu
	Tapcon Lateral (Concre	te): 155 lbs		
	Tapcon Lateral (CN	1U): 135 lbs		

Project Number:	MS	24-05004	
Project Name:	F-4500 Swi	nging Door (OSW)	
Date:	5/28/2024	Page: 4 of 9	

Summary of Test Results - Plastics Checklist

Table 2: Summary of Test Results - Plastics Checklist

Product	Test Report Number	Test Standard	Performance
	ESP010982P	ASTM D638 (before	2.2% (averaged)
SMC Skin (fiberglass		and after G155)	-2.2% (averaged)
material)		ASTM D1929	770 °F (410 °C)
material)		ASTM D2843	62
		ASTM D635	Classification HB

The testing summarized in the table above was conducted by Element Materials Technology in St Paul, MN on 02/26/13 and meets the requirements listed in Miami-Dade County Checklist #0445, For the approval of: Plastic and Foam Plastic.

Micah Swai		Project Number:	MS	24-05004
wiicali Swai	ιζ, Γ.Ε.	Project Name:	F-4500 Swi	nging Door (OSW)
		Date:	5/23/2024	Page: 5 of 9
Subject: As Tested	- Wood Screw Lateral De	osign - Single Shear	Input	
	Wood Sciew Eateral De		Calculation	
Screw Information:				
Screw Size: Screw Embed:	8 R 1.5 in	Root Diameter: 0.131 i	n	
Main Member Type:	S-P-F G: 0.42	P. F _{em} : 3,350 g	osi thickness	(t _m): <u>1.5</u> in
Side Member Type:	S-P-F G: 0.42	P. F _{es} : 3,350 p	osi thicknes	s (t _s): 1.219 in
Lateral Design Factors	- Table 12.3.1A (NDS 201	18)		
D: 0.131 in	Diameter			
F _{yb} : 100 ksi	Dowel Bending Yield St	trength		
F _{em} : <mark>3,350</mark> psi	Main Member dowel b	pearing strength		
F _{es} : <mark>3,350</mark> psi	Side Member dowel be	earing strength		
l _m : 1.5 in	Main Member dowel b	bearing length		
l _s : <mark>1.219</mark> in	Side Member dowel be	earing length		
R _d : 2.2	Reduction term - Table	e 12.3.1B (NDS 2018)		

Reference Lateral Design Values - Table 12.3.1A (NDS 2018)

See Table

 $= F_{em}/F_{es}$

 $= l_m/l_s$ See Table

$$Z_{lm}$$
: **299** Ibs $Z_{lm} = \frac{Dl_m F_{em}}{R_d}$ (EQ 12.3 - 1)

$$Z_{II}$$
: **113** Ibs $Z_{II} = \frac{k_1 D l_s F_{es}}{R_d} (EQ \ 12.3 - 3)$

Z_{IIIm}: **111** Ibs
$$Z_{III_m} = \frac{k_2 D l_m F_{em}}{(1+2R_e)R_d}$$
 (EQ 12.3 – 4)

Z_{IV}: **82** Ibs
$$Z_{IV} = \frac{D^2}{R_d} \sqrt{\frac{2F_{em}F_{yb}}{3(1+R_e)}} (EQ \ 12.3 - 6)$$

Note: Side member is part of the Jeld-Wen assembly and verified during testing. Modes Z_{Is} and Z_{IIIs} are not applicable to the calculation.

Z_{MIN}: 82 Ibs

R_e:

R_t:

 k_1 :

k₂:

1 1.2

0.466

1.111

Subject: As Tested - Wood Screw Lateral Design - Single Shear Cont.

Adjusted Lateral Design Values

$$Z' = Z * C_D * C_M * C_t * C_q * C_{\Delta}$$
 - As per table 11.3.1 NDS 2018

- C_D: 1.6 Load Duration Factor Table 2.3.2 (NDS 2018)
- C_{M} : **1.0** Wet Service Factor Table 11.3.3 (NDS 2018)
- Ct: 1.0 Temperature Factor Table 11.3.4 (NDS 2018)
- C_g: 1.0 Group Action Factor Section 11.3.6 (NDS 2018)
- C_{Δ} : **1.0** Geometry Factor Section 12.5.1.1 (NDS 2018)
- Z: 132 lbs

Fastener Bending Across Shim Space

Ω:	1.67		
L:	0.25	in	Maximum Shim Gap
	0.131		Diameter
F _{yb} :	100	ksi	Dowel Bending Yield Strength

$$\frac{F_{yb}}{\Omega} = \frac{M}{S} = \frac{16ZL}{\pi D^3} \iff Z = \frac{F_{yb}\pi D^3}{16\Omega L} \qquad \qquad Where M = \frac{ZL}{2} (Guided Bending)$$

Bearing on Masonry Strap

106

 Z_n/Ω :

lbs

Ω: 3.00 F_u: Tensile Strength of strap 33 ksi t: 20 GA thickness of strap t: 0.036 in 0.131 in D: $\frac{P_{nv}}{\Omega} = 2.7 * t * D * F_u - (EQ.J4.3.1 - 4, AISI S100)$ P_{nv}/Ω: **140** lbs

Project Number: MS24-05004 Micah Swartz, P.E. F-4500 Swinging Door (OSW) Project Name: Date: 5/23/2024 Page: 7 of 9 Wood Screw Lateral Design - Single Shear Input: Subject: Calculation: **Screw Information:** Screw Size: Root Diameter: 0.131 in 8 Screw Embed: 1.5 in

Main Member Type:	S-P-F	G: 0.42	F _{em} : 3,350 psi	thickness (t _m): 1.5 in
Side Member Type:	S-P-F	G: 0.42	F _{es} : 3,350 psi	thickness (t _s): 1.219 in

Lateral Design Factors - Table 12.3.1A (NDS 2018)

D:	0.131	in	Diameter
F _{yb} :	100	ksi	Dowel Bending Yield Strength
F_{em} :	3,350	psi	Main Member dowel bearing strength
F _{es} :	3,350	psi	Side Member dowel bearing strength
I _m :	1.5	in	Main Member dowel bearing length
۱ _s :	1.219	in	Side Member dowel bearing length
R _d :	2.2		Reduction term - Table 12.3.1B (NDS 2018)
R _e :	1		$= F_{em}/F_{es}$
R _t :	1.2		$= l_m/l_s$
k ₁ :	0.466		See Table
k ₂ :	1.111		See Table

Reference Lateral Design Values - Table 12.3.1A (NDS 2018)

$$Z_{lm}$$
: **299** Ibs $Z_{I_m} = \frac{Dl_m F_{em}}{R_d}$ (EQ 12.3 - 1)

$$Z_{\rm H}$$
: **113** Ibs $Z_{II} = \frac{k_1 D l_s F_{es}}{R_d} (EQ \ 12.3 - 3)$

Z_{IIIm}: **111** Ibs
$$Z_{III_m} = \frac{k_2 D l_m F_{em}}{(1+2R_e)R_d}$$
 (EQ 12.3 – 4)

Z_{IV}: **82** Ibs
$$Z_{IV} = \frac{D^2}{R_d} \sqrt{\frac{2F_{em}F_{yb}}{3(1+R_e)}} (EQ \ 12.3 - 6)$$

Note: Side member is part of the Jeld-Wen assembly and verified during testing. Modes Z_{Is} and Z_{IIIs} are not applicable to the calculation.

Z_{MIN}: 82 Ibs

Subject: Wood Screw Lateral Design - Single Shear Cont.

Adjusted Lateral Design Values

$$Z' = Z * C_D * C_M * C_t * C_q * C_{\Delta}$$
 – As per table 11.3.1 NDS 2018

- $\begin{array}{c|c} C_{D}: & 1.6 \\ C_{M}: & 1.0 \\ C_{T}: & 1.0$
 - Z: 132 lbs

Fastener Bending Across Shim Space

Ω:	1.67		
L:	0.25	in	Maximum Shim Gap
	0.131		Diameter
F _{yb} :	100	ksi	Dowel Bending Yield Strength

$$\frac{F_{yb}}{\Omega} = \frac{M}{S} = \frac{16ZL}{\pi D^3} \iff Z = \frac{F_{yb}\pi D^3}{16\Omega L} \qquad \qquad Where M = \frac{ZL}{2} (Guided Bending)$$

Bearing on Masonry Strap

106

lbs

 Z_n/Ω :

Ω: 3.00 F_u: Tensile Strength of strap 33 ksi t: 20 GA thickness of strap t: 0.036 in 0.131 in D: $\frac{P_{nv}}{\Omega} = 2.7 * t * D * F_u - (EQ.J4.3.1 - 4, AISI S100)$ P_{nv}/Ω: **140** lbs

Project Number:MS24-05004Project Name:F-4500 Swinging Door (OSW)Date:5/23/2024Page:9 of 9

Tapcon Lateral Design Subject: Input: Calculation: **Tapcon Size:** Size: 3/16 D: 0.1875 in Nominal Diameter 0.145 in D_{sh}: Shank Diameter Fastener Shear Capacity - 3,000 psi Concrete 181 lbs P_{nv}/Ω : See Table 1B of NOA 24-0102.06 Fastener Shear Capacity - Medium-Weight CMU P_{nv}/Ω : 135 lbs See Table 3 of NOA 24-0102.06 Note: - Critical anchor spacing is 16D - Minimum Anchor Embedment is 1-1/4" - Minimum Edge Distance is 2-1/4" **Fastener Bending Across Shim Space** L: 0.25 in Maximum Shim Gap Ω: 3.00 D_{sh}: 0.145 in Shank Diameter of Tapcon F_{vb}: 100 ksi Yield Strength of Tapcon $\frac{F_{yb}}{\Omega} = \frac{M}{S} = \frac{16P_nL}{\pi D^3} \iff P_n = \frac{F_{yb}\pi D^3}{16\Omega L}$ Where $M = \frac{P_n L}{2}$ (Guided Bending) P_n/Ω : **239** lbs **Bearing Strength of Masonry Straps - AISI S100** Size: 3/16 **Tapcon Size** 3.00 Ω : 0.145 in Shank Diameter of Tapcon Screw D_{sh}: Tensile Strength of Masonry Strap F.,: 33 ksi t: 20 GΑ t: 0.0359 in Thickness of Masonry Strap $\frac{P_{nv}}{\Omega} = 2.7 * t * D * F_u - (EQ.J4.3.1 - 3, AISI S100)$ P_{nv}/Ω : 155 lbs